

RADIATION EFFECTS TESTING AT RADEF

Arto Javanainen University of Jyväskylä Accelerator Laboratory

Finnish Satellite Workshop January 18th 2018

Radiation Environments

- Radiation can cause a myriad of problems in space systems
 - Single Event Effects
 - Cumulative effects
 - Total Ionizing Dose
 - Displacement Damage
 - Modern technologies
 - SEEs can occur at ground level due to neutrons and even muons

RADiation Effect Facility - RADEF

- <u>https://www.jyu.fi/accelerator/radiation-effects-facility</u>
- Accelerator Laboratory at University of Jyväskylä (JYFL)
- First commercial irradiation tests by Daimler Benz in 1998
- ESA supported facility since 2005
 - 1/3 ESA's external test sites
 - 1/2 Heavy ion test sites

Finnish Satellite Workshpp

RADEF GROUP

Ari Virtanen, professor Arto Javanainen, senior researcher Heikki Kettunen, laboratory engineer, Mikko Rossi, *laboratory engineer* Jukka Jaatinen, laboratory engineer Alexandre Bosser, *post doctoral researcher*(- 30.6.2018) Maris Tali, graduate student (ESA-NPI project, hosted by CERN, 1.12.2015-) Corinna Martinella, graduate student (hosted by CERN, 1.1.2017 -) Sascha Luedeke, graduate student (RADSAGA EU- MSCA project, 1.10.2017 -) Daniel Söderström, graduate student (RADSAGA EU- MSCA project, 1.10.2017 -) Andrea Coronetti, graduate student (RADSAGA EU-MSCA-project 1.12.2017-) Jaakko Tuominen, MSc. Student Juhani Lepistö, *MSc. Student* Orvokki Eerola, MSc. Student Davide Giurisato, MSc. Student (ERASMUS from University of Padova) 18.1.2018

Finnish Satellite Workshpp

RADEF BEAMS

Heavy ions at 9.3 MeV/u (upgrade up to 16 MeV/u in progress)

Protons

- 500 keV 6 MeV (low)
- 6 MeV 55 MeV (high)

Electrons

- 6/9/12/16/20 MeV
- X-rays continuous spectra: ¹³¹Xe⁺³⁵
 - 0 6 MeV(peak @ 1MeV)
 - 0 15 MeV (peak @ 2MeV)

			Table 1. 9.3 I	MeV/amu cocktails	s (M/Q≈3.7, [‡] M/0	⊋≈3.3).	
	lon	Energy [MeV]	LET ^{MEAS} @surface [MeV/mg/cm ²]	LET ^{MEAS} @Bragg peak [MeV/mg/cm ²]	LET ^{SRIM} @surface [MeV/mg/cm ²]	Range ^{SRIM} [microns]	LET ^{SRIM} @Bragg peak [MeV/mg/cm ²]
	¹⁵ N ⁺⁴	139	1.87	5.92 (@191 um)	1.83	202	5.9 (@198 um)
	²⁰ Ne ^{+6‡}	186	3.59	9.41 (@138 um)	3.63	146	9.0 (@139 um)
	³⁰ Si ⁺⁸	278	6.53	13.7 (@114 um)	6.40	130	14.0 (@120 um)
	⁴⁰ Ar ^{+12‡}	372	10.07	18.9 (@100 um)	10.2	118	19.6 (@105 um)
	⁵⁶ Fe ⁺¹⁵	523	18.59	29.7 (@75 um)	18.5	97	29.3 (@77 um)
	⁸² Kr ⁺²²	768	31.21	41.7 (@68 um)	32.2	94	41.0 (@69 um)
3:	¹³¹ Xe ⁺³⁵	1217	57.36	67.9 (@57 um)	60.0*	89*	69.2 (@48 um)

EQUIPMENT FOR TESTING

Heavy ions and protons

ECR ION SOURCE

K-130 CYCLOTRON

EQUIPMENT FOR TESTING

EQUIPMENT FOR TESTING

- Heavy ions and low-energy protons typically in vacuum
 - ➤ 1-2 minutes to ventilate
 - \geq ~ 5 minutes to pump down
- Device positioning and dosimetry remotely controlled.
 - > Typically ~ $2x2cm^2$ beam area
 - \succ X-Y and tilting
- Cabling for user's equipment on request
- Possible to test in air (limited)
 - Sensitive volume has to be on surface
 - Faster device change
 - Limited ion range

Electron Linear Accelerator

- Recommissioned Varian Clinac® medical accelerator
- 6 / 9 / 12 / 16 / 20 MeV
- X-rays continous spectra:
 - 0-6 MeV(peak @ 1 MeV)
 - 0 15 MeV (peak @ 2 MeV)
- Typical beam area is about 25x25 cm²
- Remote controlled from user barrack
- Cabling for user's equipment on request
- For harsh electron environments
 - Jupiter Icy Moon Explorer mission
 - MEO satellites (e.g. navigation)

Beam time usage at RADEF facility

in 2017

45 irradiation campaigns 26 individual users ~1400 hours ~1/4 of total beam time at JYFL

Collaborators ~70 over the years

Finnish Satellite Workshpp

How to apply for beam time

- 1st option: Contact Heikki Kettunen (<u>heikki.i.kettunen@jyu.fi</u>)
 - High demand \rightarrow recommended months in advance
 - 800 eur/hour for heavy-ions and protons
 - 400 eur/hour for electrons
- 2nd option: Scientific proposal to PAC
 - Deadlines: March 15th and September 15th
 - Submitted to Mikael Sandzelius (mikael.sandzelius@jyu.fi)
 - Free of charge, but requires solid scientific basis
 - Testing COTS for scientific Cubesat may not be sufficient ;)

RADSAGA EU-MSCA-ITN

- RADiation and Reliability Challenges for Electronics used in Space, Aviation, Ground and Accelerators
- Brings together industry, universities, laboratories and test-facilities in order to innovate and train young scientists and engineers in all aspects related to electronics exposed to radiation."
- https://radsaga.web.cern.ch/
- Started 2017
- 15 PhD projects
 - 3 PhD students at RADEF
- Total budget 3.9 M€ (~ 0.5 M€ for RADEF)
- CERN as coordinator

Other recent activities

- SkyFlash (262890 EU-FP7 Project) <u>http://www.skyflash.eu/</u>
 - development of a RadHard by design (RHBD) methodology for non-volatile flash memories
- R2RAM (640073, H2020-COMPET-2014 RIA)
 - Development of Radiation Hard Resistive Random-Access Memory
- Airbus D&S GmbH, sub-contract
 - Radiation tests of the PHY transceiver electronics with heavy ions and protons
- SENSROVER (Proposal H2020-MSCA-ITN-2018)
 - SENSors for RObots in Various EnviRonments
- VIRTUOSA (Proposal, H2020-SPACE-2018-2020 RIA)
 - Very Integrated Rf Technology solution for frequency Up-conversion and amplitude-phase Operation setting dedicated to next generation Smart Antenna array systems
- Radiation effects in SiC power devices
 - Vanderbilt, NASA, Silvaco Inc., ESA, CERN, ETH, STMicroelectronics
 - Ongoing

Recent publications (~ 100 since 2012)

- Microbeam SEE Analysis of MIM Capacitors for GaN Amplifiers, P. Kupsc et al. IEEE TNS, (2018), in print
- Single Event Burnout of SiC Junction Barrier Schottky Diode High-Voltage Power Devices, A. F. Witulski et al., IEEE TNS, (2018) in print
- Single-Event Effects in the Peripheral Circuitry of a Commercial Ferroelectric Random-Access Memory, A.L. Bosser et al., IEEE TNS, (2018), in print
- Application and development of ion-source technology for radiation-effects testing of electronics, T. Kalvas et al., NIM B, vol. 406, (2017), pp. 205-209
- Heavy-Ion Induced Degradation in SiC Schottky Diodes: Incident Angle and Energy Deposition Dependence, A. Javanainen et al. IEEE TNS, 2017, Vol. 64, no. 8, (2017) pp. 2031 -2037
- High-Energy Electron-Induced SEUs and Jovian Environment Impact, M. Tali et al. IEEE TNS, Vol. 64, no. 8, (2017), pp. 2016 – 2022
- Single-Event Upsets Induced by Direct Ionization from Low-Energy Protons in Floating Gate Cells, M. Bagatin et al., IEEE TNS, vol. 64, no. 1, (2017), pp. 464 470
- Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence, A. Javanainen et al., IEEE TNS, vol. 64, no. 1, (2017), pp. 415-420
- Energy loss and straggling of MeV Si ions in gases, C. Vockenhuber et al., NIM B, vol. 391, (2017), pp. 20-26
- Determination of electronic stopping powers of 0.05–1MeV/u ¹³¹Xe ions in C-, Ni- and Auabsorbers with calorimetric low temperature detectors, A. Echler et al., NIM B, vol. 391, (2017), pp. 38-51

Conclusions

- RADEF's activities growing steadily
 - Solid customer base (space industry and membrane production)
 - Annual total revenue about 1Meur (~ 60% space related)
 - 10-20 scientific publications annually
 - 5 PhD students
- Strong support from ESA both scientifically and economically
 - 300 keur for HIISI + 100 keur for high energy electrons
 - continuing basic contract 600 keur for 2018-23
- International collaboration
 - ESA, NASA, JAXA, CNES, RADSAGA, Vanderbilt, Montpellier, ETH, STMicroelectronics, etc.
- Partnering in EU projects and proposals (EU-FP7 and H2020)

Thank you for your attention

Need to test your components? Welcome! <u>https://www.jyu.fi/accelerator/radiation-effects-facility</u>