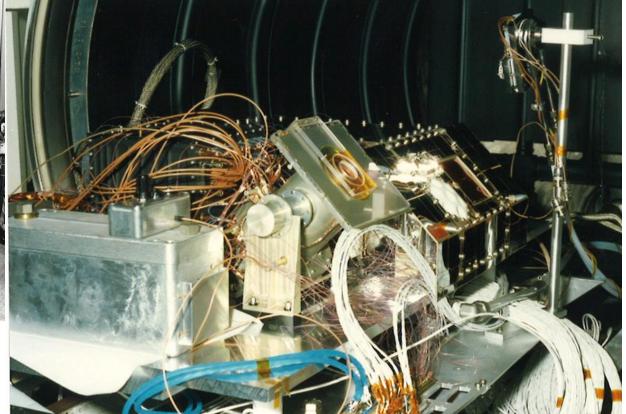
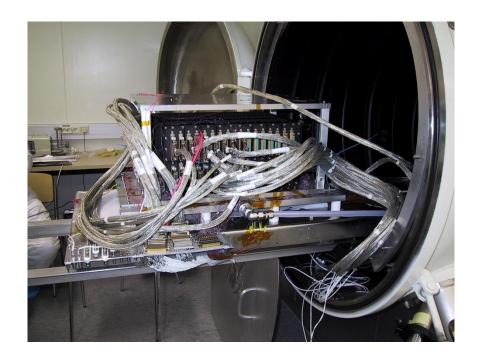


Mechanical testing of space instruments

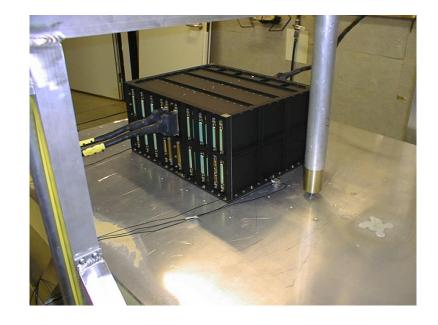
Olavi Nevalainen VTT Expert Services Ltd

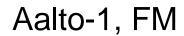
Environmental tests for space instruments from beginning of 1990 to this day


- Few projects:
 - SOHO
 - Huygens
 - Cluster
 - Gassini
 - Rosetta, PL-PDU
 - Herchel
 - GOME, GPDU
 - X-ray Solar Monitor (XSM)
 - Planck, Radiometers

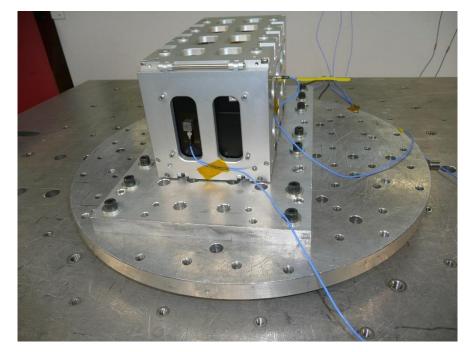

- GMES, Sentinel-1, SAR Electronics Subsystems
- Aalto-1 ja Aalto 2
- Suomi 100 CubeSat
- ICEY
- Hello World CubeSat

Thermal vacuum test for SOHO project

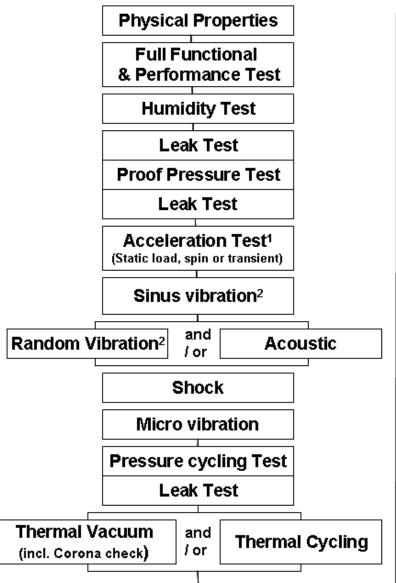


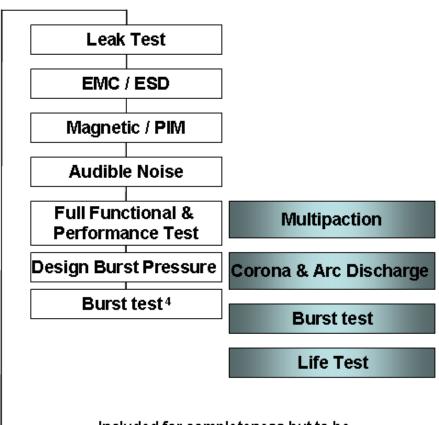


Rosetta (PL-PDU), thermal test, vibration tests and shock test



ICEY




Hello World, CubeSat

Space equipment test sequence,

6

Included for completeness but to be performed on dedicated model depending on type of equipment and mission requirements

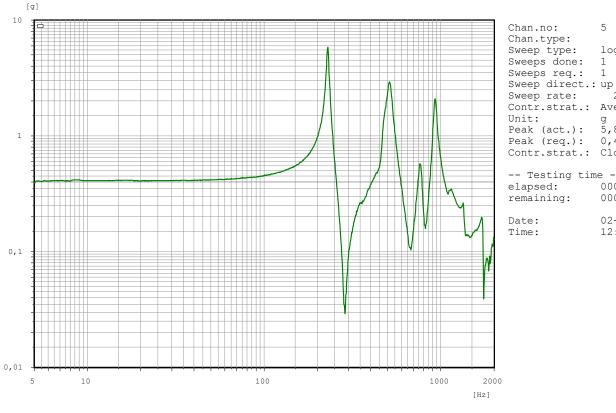
Notes:

- 1 If not covered by sinusoidal test
- 2 These tests can be performed sequentially per axis
- 3 Check only, full test could be performed on dedicated model
- 4 if not performed on dedicated model

VTT EXPERT SERVICES LTD

VTT Expert Services Ltd, Mechanical Testing

- General requirements for mechanical tests
 - The equipment is mounted to a test fixture through its normal mounting points
 - The stiffness of the test fixture
 - Tests will be carried out three perpendicular axes (x, y, z)
 - Cleanliness requirements
 - Operational equipment if powered during launch
- Acceleration test
 - Static load
 - Test is used to verify uniform force distribution on the space equipment
 - Test is normally carried out with centrifuge, but can be covered by sine test on the shaker
 - High velocity and large displacement



Low level sinusoidal sweep test

- The test is used to evaluate the space equipment integrity, a resonance search shall be performed before and after the random vibration test and sinusoidal vibration test
- Criterias for the resonance search:
 - Less than 5 % shift in frequency
 - Less than 10 % shift in amplitude
- Normally one sweep from 5 Hz to 2000 Hz with an acceleration 5 m/s²

Chan.no:

M Filtered Chan.type: Sweep type: logarithmic

Sweeps done: 1 Sweeps req.: 1

2,00 Oct/min Sweep rate:

Contr.strat.: Average

Peak (act.): 5,865 g

Peak (req.): 0,4

Contr.strat.: Closed loop

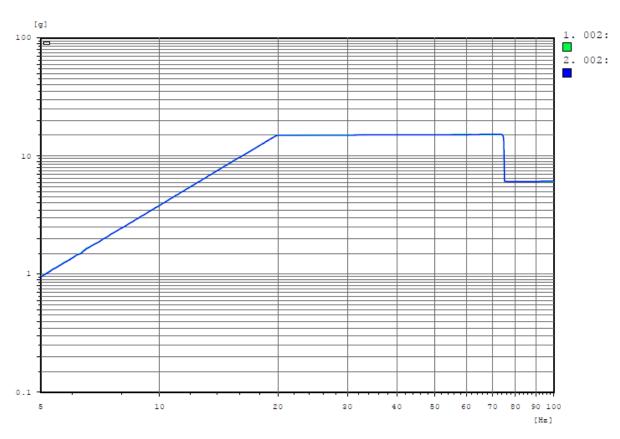
-- Testing time -elapsed: 000:04:18

remaining: 000:00:00

Date: 02-26-16 Time: 12:30:05

Sinusoidal vibration

- Continous sinusoidal sweep cycle (up and down)
- Example of test requirements:
 - Frequency range 5...100 Hz
 - Amplitude ±9,3mm, 5...20 Hz
 - Constant peak acceleration 15 g_n, 20...75 Hz
 - Constant peak acceleration 6 g_n, 75...100 Hz
 - One sweep up and one sweep down
 - Sweep rate 2 oct/min (Quolifiaction level)
 - Sweep rate 4 oct/min (Acceptance level for flight model)



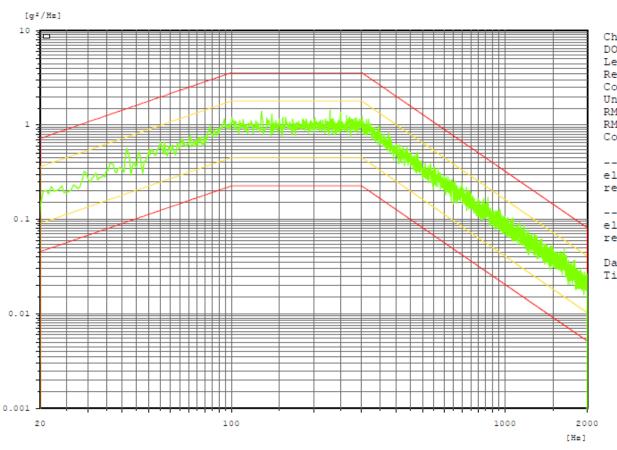
Sine

1:3 Divider 01 Y

[g] Filtered
4:2 Divider 03 Y
[g] Filtered

Random vibration test

- Random vibration is simulating very strong vibration stress affecting during the launch of space craft
- Normally in the quolification level the test duration is 2 min and for the flight models the test duration is 1 min
- One example of test parameters:


Axis	Frequency (Hz)	PSD	Total spectral acceleration
Out of plane (Z)	20 - 100	+3 dB / Oct	
	100 - 300	$2 g^2/Hz$	31,76 g _{rms}
	300 - 2000	-6 dB / Oct	
In plane (X, Y)	20 - 100	+3 dB / Oct	
	100 - 300	$0.9 \text{ g}^2/\text{Hz}$	21,3 g _{rms}
	300 - 2000	-6 dB / Oct	

Random

Control channel

Chan. type: X
DOF: 240
Level: 0,0 dB
Resolution: 0,5 Hz
Contr. strat.: Average
Unit: g²/Hz
RMS (curr.): 22,19 g
RMS (ref.): 21,3 g

Contr. strat.: Closed loop

-- Time on curr. level -elapsed: 000:02:00 remaining: 000:00:00

-- Time total --

elapsed: 000:02:20 remaining: 000:00:00

Date: 12-07-16 Time: 12:03:02

Shock test

- The shock tests demonstrate the ability of the space equipment to withstand the shocks encountered during the lifetime, e.g.: fairing separation, space equipment separation, booster burn out, apogee boost motor ignition, solar arrays and antennas deployment, shocks from landing of reusable elements
- The test requirements are normally based on the measured or analyzed shock levels on the mounting structure of the equipment
- The shock level is specified in shock response curve

Characteristic		Qualification	Acceptance	Proto-flight
Test		Not required	Analysis required	Analysis required
Directions	{BRF}		X, Y, Z	X, Y, Z
Profile	Frequency		Amplitude	Amplitude
	[Hz]		[g]	[g]
	20		30	30
	2000		1000	1000
	10000		1000	1000
# of shocks			- [/axis]	- [/axis]

9ietureuna(t): 0.1000, -0.3358

Shock test carried out with ringing plate

490.0000

Time pulse

Shock response (SRS)

gn 3000.00

ietureuna_MaxSRS(f): 594.6394, 343.400

Other mechanical tests

Acoustic test

- Acoustic tests are often but not always conducted on space equipment with large surfaces, which are likely to be susceptible to acoustic noise excitations, e.g. solar arrays, antennas
- In that case random vibration testing is not performed

Micro vibration tests

 The equipment will be in its nominal operational configuration similar to the on-orbit operational conditions

Mechanical testing services in VTT Expert servises Ltd.

Electrodynamic shakers

	LDS V875	LDS V964
Max. force, sine/random	40 kN/40 kN	80 kN/80 kN
Frequency range	52000 Hz	52000 Hz
Max.acceleration, sine	1000 m/s ²	1000 m/s ²
Max. velocity	1,8 m/s	2,0 m/s
Max. displacement	50 mm	25 mm
Test tables	Max. load 600 kg	Max. load 4000 kg
- Vertical direction	Expanders Ø 810 mm and Ø 500 mm Table 910 mm x 910 mm	Expander Ø 810 mm Tables 1370 mm x 760 mm and 1685 mm x 1125 mm
- Horizontal direction	Slip table 1050 mm x 1050 mm	Slip tables; 1000 mm x 1000 mm and 1000 mm x 3000 mm
Control systems	m+p International Vib Control	m+p International Vib Control
	12 input channels	16 input channels
	Sinusoidal vibration	Sinusoidal vibration
	Sine dwell	Sine dwell
	Random vibration	Random vibration
	Shock impulses	Shock impulses
	Shock responses	Shock responses
	RoR-testaus	RoR-testaus
	Time history measurements and analysis	Time history measurements and analysis

Shock table Ringing plate

- Max. load 20 kg
- Falling hammer and pendulum hammer
- Shock response measurements with Dactron Laser USB

Bibliography

- ECSS-E-ST-10-03C, Space engineering, Testing, 2012.
- Environment levels, ISILaunch09, Auxiliary payloads
- VTT Tiedotteita 1781, Ympäristötestaus, Space 2000, 1996

